ICPC2024 武汉邀请赛
# ICPC2024 武汉邀请赛
2024 ICPC National Invitational Collegiate Programming Contest, Wuhan Site (opens new window)
# B - Countless Me
# Solution
显然,只能执行 次操作是没用的条件
我们只需要把和 分给 个数,使得 个数的或和最小即可
从高到低考虑每一位,假设此时枚举到第 位
如果这一位可以不放 ,即后面的位能组成 ,则肯定不放
如果这一位要放 ,考虑放几个 ,显然,最大值
按照贪心的思想,放 个 即可
模拟此过程
# Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll sum = 0; ll n = 0; cin >> n;
ll ans = 0;
for (int i = 1; i <= n; i++) { ll x; cin >> x; sum += x; }
for (ll i = 30; i >= 0; i--) {
if (((1ll << i) - 1) * n >= sum) continue;
ll num = min(1ll * n, sum / (1ll << i));
if (num == 0) continue;
sum -= num * (1ll << i);
ans |= 1ll << i;
}
cout << ans << '\n';
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# D - ICPC
# Solution
定义 表示从 点出发,向右移动不超过 次的和的最大值
定义 表示从 点出发,先向左走,然后向右走的最大值,显然只会发生一次调头
不妨设在向左走了 步折返,那么
显然这个用前缀最大值处理就好了
对于先向右走然后折返的情况,只需要把 倒过来处理一次就好了
# Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
void calc(vector<ll> &a, vector<vector<ll> > &dp) {
int n = a.size() - 1;
vector<vector<ll> > g(n + 1, vector<ll>(n + 1, 0));
for (int x = 1; x <= n; x++) {
g[x][0] = a[x];
for (int j = 1; j <= n; j++) {
g[x][j] = g[x][j - 1];
if (x + j <= n) g[x][j] += a[x + j];
}
}
for (int s = 1; s <= n; s++)
for (int j = 1; j <= 2 * n; j++) {
dp[s][j] = max(dp[s][j], max(dp[s - 1][j - 1], g[s][min(j, n)]));
}
}
int main() {
int n; cin >> n;
vector<ll> a(n + 1);
for (int i = 1; i <= n; i++) cin >> a[i];
vector<vector<ll> > dp(n + 1, vector<ll>(2 * n + 1, 0));
calc(a, dp);
reverse(a.begin() + 1, a.end());
reverse(dp.begin() + 1, dp.end());
calc(a, dp);
reverse(dp.begin() + 1, dp.end());
ll ans = 0;
for (int i = 1; i <= n; i++) {
ll now = 0;
for (int j = 1; j <= 2 * n; j++)
now ^= 1ll * j * dp[i][j];
ans ^= (now + i);
}
cout << ans << '\n';
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# E - Boomerang
# Solution
显然,我们先按照 为根节点建树,对于每个时刻 ,谣言传播到 小于等于 的节点
我们在每个时刻辟谣时,只需要观察直径,从直径的中点开始辟谣
所以我们需要维护每个时刻树的直径
有一个比较显然的结论,我们按深度从小到大加点,设深度为 的点在时刻 加入,对于一个新加入的点,它肯定时新的直径的一端,另外一端是老直径的一段
所以我们只需要维护直径的两端,对于新加入的点,用 LCA 算出新直径,看是保留那一端
求出每个时刻的直径后,对于每个 ,我们用二分找一个时刻 使得, 能覆盖整个 的直径
当然这里用双指针也是可以的,因为 增加时,答案肯定递减
# Code
#include <bits/stdc++.h>
using namespace std;
vector<vector<int> > g;
vector<int> dep;
vector<array<int, 20> > fa;
int n, rt, t0;
int max_dep;
void dfs(int u, int f, int dp) {
max_dep = max(max_dep, dep[u] = dp);
fa[u][0] = f;
for (int i = 1; i < 20; i++)
fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (auto &v : g[u]) {
if (v == f) continue;
dfs(v, u, dp + 1);
}
}
int lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (int i = 19; i >= 0; i--)
if (dep[x] - (1 << i) >= dep[y])
x = fa[x][i];
if (x == y) return x;
for (int i = 19; i >= 0; i--)
if (fa[x][i] != fa[y][i])
x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int dis(int x, int y) { return dep[x] + dep[y] - 2 * dep[lca(x, y)]; }
int main() {
// freopen ("E.in", "r", stdin);
cin >> n;
g.assign(n + 1, vector<int>());
dep.resize(n + 1); fa.resize(n + 1);
for (int i = 1; i < n; i++) {
int u, v; cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
cin >> rt >> t0;
dfs(rt, 0, 0);
vector<int> id (n + 1);
for (int i = 1; i <= n; i++) id[i] = i;
auto cmp = [&](int x, int y) {return dep[x] < dep[y];};
sort (id.begin() + 1, id.end(), cmp);
int pos = 2, max_tim = 2 * n;
vector<int> log_dep (max_tim + 1);
int d1 = rt, d2 = rt;
auto insert = [&] (int x) {
int d1_x = dis(d1, x), d2_x = dis(d2, x);
if (d1_x > d2_x) { d2 = x; return d1_x; }
else { d1 = x; return d2_x; }
};
for (int i = 1; i <= max_dep; i++) {
while (pos <= n && dep[id[pos]] == i)
log_dep[i] = max(log_dep[i], insert(id[pos++]));
}
for (int i = max_dep + 1; i <= max_tim; i++)
log_dep[i] = log_dep[i - 1];
for (int k = 1; k <= n; k++) {
auto check = [&] (int t) {
int l = log_dep[t] / 2 + (log_dep[t] & 1);
if (1ll * k * (t - t0) >= 1ll * l) return true;
return false;
};
int l = t0 - 1, r = max_tim;
while (l + 1 < r) {
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid;
}
cout << r << ' ';
}
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# F - Custom-Made Clothes
# Solution
交互题
我把题转化成求方阵中第 小的数
显然开始时二分答案,二分 ,然后去 check 在 在方阵中有多少小于等于 的
显然,小于等于 的区域肯定是在左上角的某块区域,而有一条折的分界线
我们只需要得到这条分界线就可以得到小于等于 的个数了
具体假设此时询问, 是否小于等于 ,如果返回 ,则 ,否则
# Code
#include <bits/stdc++.h>
using namespace std;
int main() {
int n, k; cin >> n >> k;
int l = 0, r = n * n; k = n * n - k + 1;
auto check = [&](int x) {
int res = 0;
int pos_x = n, pos_y = 1;
while (pos_x >= 1 && pos_y <= n) {
cout << "? " << pos_x << " " << pos_y << " " << x << endl;
int rely; cin >> rely;
if (rely == 1) {
res += pos_x;
pos_y++;
}
else {
pos_x--;
}
}
return res;
};
while (l + 1 < r) {
int mid = (l + r) / 2;
if (check(mid) >= k) r = mid;
else l = mid;
}
cout << "! " << r << endl;
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# I - Cyclic Apple Strings
# Solution
签到题,只需要输出除了 的连通块的个数
# Code
#include <bits/stdc++.h>
using namespace std;
int main() {
string s; cin >> s;
s = " " + s;
int lst_0 = -1;
for (int i = 1; i < s.size(); i++)
if (s[i] == '0')
lst_0 = i;
int ans = 0;
for (int i = 1; i <= lst_0; i++)
if (s[i] == '1' && s[i - 1] != '1')
ans += 1;
cout << ans << endl;
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# K - Party Games
# Solution
观察
当 时, ,显然先手必胜
当 时, ,无论先手拿 还是 ,后手拿另外一个,异或和位 ,先手必败
当 时, ,显然先手必胜
当 时, ,先手拿走 让异或和为 ,先手必胜
# Code
#include <bits/stdc++.h>
using namespace std;
void solve() {
int n; cin >> n;
int x = n % 4;
if (x == 0 || x == 1) puts("Fluttershy");
else puts("Pinkie Pie");
}
int main() {
int t; cin >> t;
while (t--) solve();
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
# M - Merge
# Solution
考虑到奇数 + 偶数 = 奇数
也就是说,偶数最多只会被加一次
所以考虑从偶数入手,假设当前最大的偶数是
那么需要判断是否可以组成 或者
判断一个数 是否可以被组成
- 如果当前有 , 则可以直接组成
- 如果当前无 且 为奇数,则递归查询 和
- 若当前无 ,且 为偶数,则不能得到
# Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
map<ll, int> mp;
stack<ll> need;
bool check(ll x) { //验证 x 是否能组成
bool flg = 0;
if (mp.count(x) && mp[x] > 0) {
mp[x] -= 1;
need.push(x);
return 1;
}
else if (x & 1) {
if (check(x / 2) && check(x - x / 2)) {
return 1;
}
}
return 0;
}
int main() {
freopen ("M.in", "r", stdin);
freopen ("M.out", "w", stdout);
int n; cin >> n;
vector<ll> a(n + 1, 0);
vector<ll> ans;
priority_queue<ll> pq_odd, pq_even;
for (int i = 1; i <= n; i++) {
cin >> a[i], mp[a[i]] += 1;
if (a[i] % 2 == 1) pq_odd.push(a[i]);
else pq_even.push(a[i]);
}
while (!pq_even.empty()) {
ll x = pq_even.top(); pq_even.pop(); if (mp[x] <= 0) continue;
while (!pq_odd.empty() && pq_odd.top() > x + 1) {
if (mp[pq_odd.top()] > 0) {
mp[pq_odd.top()]--;
ans.push_back(pq_odd.top());
continue;
}
pq_odd.pop();
}
if (check(2 * x + 1)) {
mp[x * 2 + 1] += 1;
while (!need.empty())
need.pop();
pq_odd.push(x * 2 + 1);
}
else {
while (!need.empty()) {
mp[need.top()] += 1;
need.pop();
}
if (check(2 * x - 1)) {
while (!need.empty())
need.pop();
mp[x * 2 - 1] += 1;
pq_odd.push(x * 2 - 1);
}
else {
while (!need.empty()) {
mp[need.top()] += 1;
need.pop();
}
mp[x] -= 1;
ans.push_back(x);
}
}
}
while (!pq_odd.empty()) {
if (mp[pq_odd.top()] <= 0) {
pq_odd.pop();
continue;
}
ans.push_back(pq_odd.top());
mp[pq_odd.top()] -= 1;
pq_odd.pop();
}
cout << ans.size() << endl;
sort (ans.begin(), ans.end(), greater<ll>());
for (int i = 0; i < ans.size(); i++)
cout << ans[i] << " \n"[i == ans.size() - 1];
return 0;
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93